Exercise for Neural Network for Pattern Recognition
Exercise 0: Generate traing data set, and initialize weights.
Exercise 1: With Trainining_data_set_input[0][0],
let's decide outputs from the hidden layer.
Before you start exercises, you should click 'Initialize Weights' above.
Constants:
NO_IMAGES_IN_TRAINING_DATA_SET
NO_NODES_INPUT_LAYER
NO_NODES_HIDDEN_LAYER
NO_NODES_OUTPUT_LAYER
THRESHOLD
ALPHA
Arrays:
Training_data_set_input[0][], Training_data_set_input[1][] // For 'A' and 'B' respectively
Weights_input_hidden_layers[][]
Weights_hidden_output_layers[][]
Outputs_input_layer[] // Outputs from input layer
Outputs_hidden_layer[] // Outputs from hidden layer
Outputs_output_layer[] // Outputs from output layer
Expected_outputs[0][], Expected_outputs[1][] // For 'A' and 'B' respectively
Errors[]
Deltas_output_layer[] // Deltas for output layer
Deltas_hidden_layer[] // Deltas for hidden layer
Exercise 2: Let's decide outputs from the output layer.
This exercise should be done after Exercise 1.
Constants:
NO_IMAGES_IN_TRAINING_DATA_SET
NO_NODES_INPUT_LAYER
NO_NODES_HIDDEN_LAYER
NO_NODES_OUTPUT_LAYER
THRESHOLD
ALPHA
Arrays:
Training_data_set_input[0][], Training_data_set_input[1][] // For 'A' and 'B' respectively
Weights_input_hidden_layers[][]
Weights_hidden_output_layers[][]
Outputs_input_layer[] // Outputs from input layer
Outputs_hidden_layer[] // Outputs from hidden layer
Outputs_output_layer[] // Outputs from output layer
Expected_outputs[0][], Expected_outputs[1][] // For 'A' and 'B' respectively
Errors[]
Deltas_output_layer[]
Deltas_hidden_layer
Exercise 3: Let's decide errors.
This exercise should be done after Exercise 2.
Exercise 4: Let's decide deltas for the output layer.
This exercise should be done after Exercise 3.
Exercise 5: Let's decide deltas for the hidden layer.
Exercise 6: Let's update weights between hidden layer and output layer.
Exercise 7: Let's update weights between input layer and hidden layer.
Exercise 8: Let's train the NN with other two images.
Exercise 9: Let's assume that the NN is fully trained.
Let's find if a given image is 'A' or 'B',
by observing the output values.